IPv6 over Wireless Sensor Networks

Tiny6 Project

1

Why IP?

- IP focuses on network platforms interconnection:
 - Metcalfe's law: Network value = user²
 - 80's: IP became dominant in data networks
 - 90's: IP telephony
 - 2000's: Television
 - 2010's: Objects, Machine to Machine

Why IPv6?

- IPv4 address is small (32 bits ~ 4 billion)
- IPv4 address space is saturated
- IPv6 development started in 1994
 - Specifications are standards
 - Networks are in function
 - Addresses are 4 times larger than IPv4
 - But Metcalfe's law is against IPv6 for traditional applications

Why IPv6?

- IPv6 addressing plan is almost illimited
- Interconnection can create more powerful application
 - Mobile phone may send message to an activator
 - Sensor may exchange information

- IPv6 Addressing may also evolve
 - Sensor Network is the premise to embedded systems

IP Model

32 bits

Ver.	IHL	ToS	Total Length				
Identifier			flags fragment				
TTL Protocol			Checksum				
	Source Address						
Destination Address							
Options							

20 Bytes

32 bits

Ver.	ToS	Total Length		
Iden	tifier	flags	fragment	
TTL	Protocol	Checksum		
Source Address				
Destination Address				

32 bits

32 bits

Is it enough for the future ?

Address length

- Between 1 564 and 3 911 873 538 269 506 102 addresses by m²
- 60,000 trillion trillion addresses per inhabitant of the earth
- Addresses for every grain of sand in the world
- => Justification of a fix address length
- An address for everything <u>on the network</u> and not An address for everything

Textual Address Format

- Base format (a 16 byte Global IPv6 Address):
 - $\ \ 2001:0660:3003:0001:0000:0000:6543:210F$
- Compact Format:

2001:660:3003:1::6543:210F

- In order to avoid ambiguity, "::" can occur only once

Address Space

0000::/8	Reserved by IETF	[RFC4291]
0100::/8	Reserved by IETF	[RFC4291]
0200::/7	Reserved by IETF	[RFC4048]
0400::/6	Reserved by IETF	[RFC4291]
0800::/5	Reserved by IETF	[RFC4291]
1000::/4	Reserved by IETF	[RFC4291]
2000::/3	Global Unicast	[RFC4291]
4000::/3	Reserved by IETF	[RFC4291]
6000::/3	Reserved by IETF	[RFC4291]
8000::/3	Reserved by IETF	[RFC4291]
A000::/3	Reserved by IETF	[RFC4291]
C000::/3	Reserved by IETF	[RFC4291]
E000::/4	Reserved by IETF	[RFC4291]
F000::/5	Reserved by IETF	[RFC4291]
F800::/6	Reserved by IETF	[RFC4291]
FC00::/7	Unique Local Unicast	[RFC4193]
FE00::/9	Reserved by IETF	[RFC4291]
FE80::/10	Link Local Unicast	[RFC4291]
FEC0::/10	Reserved by IETF	[RFC3879]
FF00::/8	Multicast	[RFC4291]

IPv6 addresses

Global Prefixes:

3	45	16	64
001	Global routing prefix	Subnet ID	Interface ID

Link Local:

Interface Identifier

- Stateless Auto-configuration
- IEEE defines the mechanism to create an EUI-64 from IEEE 802 MAC addresses (Ethernet, FDDI)

Interface Identifier for IEEE 802.15.4

• E	EUI-64		
	24 bits	40 bits	
μġ	vendor	serial number	
1 g	vendor	serial number	

Interface Identifier for IEEE 802.15.4

IID Value

IID from MAC address is just a convenience:

- Fixed IID may be better for servers
 - Especially DNS
- Random value improves security
 - May cause DNS registration problem
- Cryptographic value is under studies
 - Derived from a host's public key hash
 - Allow to authenticate the sender
 - Used in HIP (Host Identity Protocol), Shim6 and Secure Neighbor Discovery.

Anycast Addresses (RFC 2526)

- Anycast IDs are defined in RFC 2526
- Anycast addresses have been defined for routers only so far
 - Subnet prefix = unchanged
 - Anycast ID = highest 128 interface ID values
- 2 different scenarios:

64 bits	57 bits	7 bits	
subnet prefix	1111110111111	anycast ID	
	interface identifi	ler field	
n bits	121-n bits	7 bits	
+subnet prefix	1111111111111	anycast ID	
+	interface identifier field		

- Anycast address of all home agent in 2001:660:3001:4002::/64 2001:660:3001:4002:FDFF:FFFF:FFFF:FFFE -> home agents anycast ID

Multicast Addresses

11111111	Flag	Scope	Group ID
8 bits	4 bits	4 bits	112 bits

```
Flag bits: 0 R P T
                                                           Scope
                                                           0: Reserved
\mathbf{T} = \mathbf{0}
                                                           1: Interface-local
 permanent addresses (managed by IANA)
                                                           2: Link-local
T = 1
                                                           3: Subnet-local
                                                           4: Admin-local
 transient multicast addresses
P = 1 > T = 1
                                                           5: Site-local
                                                           8: Organization-local
 derived from unicast prefix (RFC3306)
R = 1 > P = 1 > T = 1
                                                           E: Global
 embedded RP addresses (I-D)
                                                           F: Reserved
```


Neighbor Discovery

Neighbor Solicitation (NS):

- to determine the link-layer @ of a neighbor
- or to check its impeachability
- also used to detect duplicate addresses (DAD)
- Neighbor Advertisement (NA):
 - answer to a NS packet
 - advertise the change of physical address

• Redirect:

Used by a router to inform a host a better route to a given destination

NBMA network

Off-link model. Two kinds of NBMA:

- Always a central point (such as 3G)
- Possibility of direct communication between two hosts, but no broadcast (i.e. Frame Relay, ATM,...)
- RS: set a bit to indicate this state
- No Neighbor Sollicitation
 - All packets are sent to central router
 - Redirect can be used

NBMA Network

Optimistic DAD

When an address is created, DAD is sent

- Based on Timeout
- Repeated several times (datagram)
- About 3sec before using the address
- Risk of collision is quite low
 - Optimistic DAD: use the address immediatly,
 - Suppress it in case of failure of DAD

6LoWPAN

6LoWPAN

- IPv6 mandate that L2 supports at least a 1280 bytes frame
- IEEE 802.14.5 maximum frame size is 127 Bytes
 Without headers
- 6lowPAN is an adaptation layer to carry large IPv6 packet

6lowPAN

- 6lowPAN offers a fragmentation mechanism
- 6lowPAN compresses IPv6 header
 RFC 4944 compression method soon deprecated
- 6lowPAN offers support for Mesh Routing and Broadcast

IEEE 802.15.4 encapsulation

6LoWPAN Dispatch

- First byte of packet
 - Used to distinguish between 6lowPAN and ZigBee packet
 - First two bits 00 is used by Zigbee data packets
 - 6lowPAN avoid this value
 - But
- Zigbee also uses other values
- Dispatch is not a SAP
- Other values 01, 10 and 11 are used by 6lowPAN to define header type

Dispatch Values

- 01 000001 Uncompressed IPv6
- O1 000010 Compressed IPv6
- 01 010000 Broadcast
- O1 1xxxxx Alternative proposal
 - Used to suppress routing loops
- ⊃ 10 xxxxxx MESH
 - Kind of tunnel to carry source and destination addresses
- 11 000xxx Fragmentation (first)
- 11 100xxx Fragmentation (subsequent)

Uncompressed IPv6 header

Only between 77 and 101 Bytes left

- RS: 72 Bytes
- Works only if addresses are 2 byte-long with no PANid
- Otherwise fragmentation should be used

Compressed IPv6 header

IPv6 header is very stable

- Major part are source and destination addresses
- 6lowPAN compression is stateless
 - No context for session, only done on packet bases
- Only HL cannot be compressed, since this field may vary during transmission

Compressed IPv6 header

Addresses are composed of two parts

- 64 bits for prefix
- 64 bits for IID
- If prefix is FE80::/64 it can be avoided
- If IID is derived from MAC address, it can be avoided
- If not compressed, then sent after the compressed header

Interface ID construction

- If MAC address is 64 bit-long
 - Use the standard algorithm (inverse 2nd bit)
- If MAC address is 16 bit-long
 - 0xxx xxxx xxxx xxxx: unicast addresses
 - IID = PANid:00FFFE00:MAC
 - 2nd bit is set to 0
- IPv6 multicast
 - 100x xxxx xxxx xxxx: multicast addresses
 - Map the last 13 bits of the IPv6 muticast address

Fragmentation

- If IPv6 packet is too big, fragmentation must be used
- Two headers are used:

6lowPAN in a meshed network

• Two appraoches:

- Mesh-under
 - Mesh requires a routing protocol
 - 6lowPAN provide support for routing but does not define the routing protocol
 - From IP view the mesh is one prefix
- Route-over
 - Forwarding is done at IP level
 - ROLL IETF Workin Group focuses on that topic
 - Several prefixes may be used
 - Closer to ad-hoc networks

Mesh header

- Radio is a broadcast medium
- The receiver must be explicitly specified
 - In wire technology bridging does not change source or destination addresses
- Mesh header allows to keep source and destination addresses
 - Kind of tunnel

Mesh header

Broadcast Header

- When broadcast is used destination address is FFFF
- All neighbors receives the frame
- Loops are created
- This field allow to distinguish copies of the same frame
- Node must remember sequence number and source address
 - If values are already in cache frame is discarded

6LoWPAN alternative compression scheme

- RFC4944 is only efficient for packets with Link Local addresses
- Either:
 - Neighbor Discovery in one frame
 - Communication between Sensors
- Sensor will communicate with other equipements on the Internet
 - A draft specifies a more efficient compression scheme.

New header compression scheme

- draft-ietf-6lowpan-hc-05.txt
- New and more efficient coding for all king of frames
 RFC 4944 works well only for NDP
- Global addresses can use a context to avoid to send full prefix
- Upper Layer are compressed independently:
 - Dispatch value for each layer

Source address compression

Source address compression

Source address compression

0: 1:		M=0 DAC=0	M=0 DAC=1	M=1 DAC=0	M=1 DAC=1
	00	Full address on line	reserved	48 bits online FFXX::00XX:XXXX :XXXX	Dest. online
	01	Link Local 64 first bits elided 64 last bits online	Context + 64 online	32 bits online FFXX::00XX:XXXX	48 bits online FFXX::XX[plen]: [prefix]:XXXX:X XXX
dest.	10	Link Local 112 first bit elided 16 last bits online	Context + 16 online	16 bits online FF0X:::0XXX	reserved
dest. i.e. c		Link Local Elided Used L2 addr	Context + L2 addr	8 bit online FF02::00XX	reserved

Examples (Router Sollicitation)

• IPv6

- TC + FL = 0
- IPv6 source address: L-L
- IPv6 destination address: FF02::2
- ICMPv6

L4 compression

Only defined for UDP

- A well knonw fixed port number and delta online
- Checksum can be elided for some specific traffic

Nothing for other L4

- TCP
- ICMP
- ROLL ?

Revisiting Neighbor Discovery

ND optimization

- What is a link ? Not clear for WSN
- What is a site ? Administratively defined
- Radio range may vary:
 - DAD may not work efficiently
- No Multicast, so NS does not used sollicited address but broadcast.
- New NDP for LowPAN ?
 - draft-ietf-6lowpan-nd-00

Generic model

ТΠ

Whiteboard

Whiteboards keep address registration:

- Distributed among all edge routers
- Ethernet link between ER is used to synchronise address registrations
- Allows mobility inside the link.
- In route-over mode, nodes with router functionnalities relay the information.
- New ICMP messages
- Registration is soft state (periodically renewed)

Routing: ROLL

RPL

- Based on Distant Vector
- Different of RIP
 - Several parents (DAG)
 - Several DAG
 - Loop Avoidance (Try not to increase metric)
- Use Router Advertissement (RA)
 - With DAG Information Option (DIO)
 - To create default route
- Une Neighbor Advertissement (NA)
 - With Destination Advertissement Option
 - Route inside the WSN

RPL

- Rank = max (Parent's Rank) +1
- Goal minimize Rank

RPL sibling

- Used a same rang router to forward information
- Avoid to increase rank

Conclusion

Conclusion

- IPv6 is the common language between all sensors and applications
- This lead to a strong evolution of Internet paradigm:
 - From Interconnection model (same format) ...
 - ... to interface model:
 - IPv6 header format is changed (+/-)
 - AC/border routers speak IPv6
- Work in progress, but:
 - Implementation of 6LoWPAN in WSN OS
 - RPL just started, some modification will happen

